羲的视觉识别训练陷入了困境,易诚决定还是攒钱买培训项目,自己还是别亲自来训练了,效率低下,耽误自己宝贵的时间。
其实伏羲是能进行无监督学习的。
所谓监督学习,就是我们告诉人工智能某个特定输入的正确答案。比如指示给人工智能一幅汽车的图像,并告诉它正确答案是“汽车”。
这种学习方式之所以被称为监督学习,是因为学习的过程类似于成人向年幼的孩子展示图画书。
成年人知道正确的答案,孩子根据前面的例子做出预测。这也是训练神经网络结构的人工智能和其他类型人工智能学习体系结构最常用的技术。
比如说,告诉人工智能,自己所居住的城市中大量房屋的描述及其价格,让人工智能尝试预测你自己家房子的售价。
重要的是“告诉”这一环节,必须有智力正常的成人作为监督者。
而无监督学习,则是智力达到一定程度的生命体独有的能力。
比如人类和大多数其他动物的学习,是在生命的前几个小时、几天、几个月和几年,以没有人监督的方式学习:我们通过观察、发出行动与世界接触,得知我们行动的结果,以此来了解世界如何运作。
没有人告诉我们所看到的每一个对象的名称和功能,但我们能学会非常基本的概念,比如世界是三维的,物体不会自行消失,没有支撑的物体会往下落。
伏羲也是有这种能力的。所以要让它独立发展出高级的视觉识别能力,也不是不可以,但需要非常强大的硬件基础,以及非常漫长的时间。
而接受培训项目,也就是接受“监督学习”,能大大缩短这一过程。
视觉识别能力,其实不像人们想像的那么简单。比如,一个智力正常的人类漫步在小区里,看见一条萨摩耶和一条吉娃娃,虽然它们的外表相差很大,体型也不是一个量级,但我们能一眼就认出,它们都属于“狗”。
看到两条不同的萨摩耶,我们能很快分辨出,这条是楼上老李家的,那条是隔壁老周家的。
但是对于人工智能而言,图像只是一串数组。
伏羲的核心成分借鉴了深度学习系统,在深度学习系统中有一个特别有用的架构被称为卷识神经网络。
当人工智能需要识别一个图像时,它首先检测组成这个图像的那一串数组内的一小部分,由部分到整体。
例如物体的边缘,在第一层卷识神经网络中能够被轻易检测出来。
而神经网络的下一层将检测这些简单图案的组合所形成简单形状,比如汽车的轮子,马的尾巴上的毛,蝴蝶翅膀上的鳞片,人脸的眼睛。
再下一层将检测这些形状组合所构成的物体的某些部分,例如人脸、腿部,马的尾巴,蝴蝶的翅膀。
神经网络的最后一层将检测刚才那些部分的组合:一辆汽车、一架飞机、一个人、一匹马、一只蝴蝶等等。神经网络的深度使网络能够以这种分层次的方式识别复杂模式。
但是想要人工智能学会识别这颗星球上的万事万物,数十亿各不相同的人类和动物,就需要经过大量样本数据库的训练。这也是为什么伏羲需要那些大数据公司提供的训练项目。